MATEMATICA I M - Z
Anno accademico 2020/2021 - 1° annoCrediti: 9
SSD: MAT/05 - ANALISI MATEMATICA
Organizzazione didattica: 225 ore d'impegno totale, 147 di studio individuale, 42 di lezione frontale, 36 di esercitazione
Semestre: 1°
Obiettivi formativi
I principali obiettivi di questo insegnamento sono:
1) abituare lo studente al rigore logico, che negli studi scientifici riveste un'importanza fondamentale.
2) mettere lo studente in grado di conoscere i principali oggetti della Matematica e comprendere in che modo essi possano intervenire nello studio di discipline diverse.
Più in dettaglio, gli obiettivi, declinati secondo i descrittori di Dublino, sono i seguenti:
Conoscenza e capacità di comprensione (knowledge and understanding): lo studente apprenderà alcuni basilari concetti matematici e svilupperà le capacità di calcolo e manipolazione dei più comuni oggetti matematici: fra questi, limiti e derivate per le funzioni di una variabile ed elementi di Algebra lineare.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): attraverso esempi legati alle scienze applicate, lo studente potrà apprezzare l’importanza della Matematica in ambito scientifico e non solo come disciplina fine a se stessa, ampliando in tal modo i propri orizzonti culturali. Lo studente apprenderà le principali tecniche e basilari metodi dimostrativi e sarà invitato ad applicarli per la risoluzione di semplici problemi simili a quelli affrontati a lezione dal docente.
Autonomia di giudizio (making judgements): lo studente sarà abituato a riflettere sulle dimostrazioni fatte in classe o sulle tecniche seguite per la risoluzione di alcuni esercizi per affinare le capacità logiche e lo spirito critico. Molte dimostrazioni saranno presentate in modo schematico e intuitivo per renderle più fruibili a quegli studenti che sono meno attratti dalla Matematica, pur mantenendo il giusto rigore logico.
Abilità comunicative (communication skills): studiando la Matematica, e mettendosi alla prova mediante le esercitazioni guidate e i seminari, lo studente apprenderà a comunicare con rigore e chiarezza sia oralmente che per iscritto. Imparerà ad utilizzare un linguaggio corretto sintetico preciso e puntuale.
Capacità di apprendimento (learning skills): gli studenti, soprattutto i più volenterosi, saranno stimolati ad approfondire alcuni argomenti, anche mediante lavori di gruppo.
Modalità di svolgimento dell'insegnamento
Le lezioni si svolgeranno in maniera tradizionale con lezioni frontali durante le quali saranno svolti, a supporto della parte teorica, molti esercizi. Saranno assegnati esercizi per casa e poi gli studenti saranno invitati a svolgerli alla lavagna. Ampio spazio sarà dedicato alle ore di ricevimento durante le quali lo studente potrà chiarire i dubbi sia sulla parte teorica, sia sulla parte tecnica e potrà inoltre essere guidato nel metodo di studio.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Prerequisiti richiesti
I prerequisiti sono quelli richiesti per l'iscrizione al Corso di laurea. E' fondamentale una buona predisposizione al ragionamento logico.
Frequenza lezioni
obbligatoria
Contenuti del corso
Il programma dettagliato sarà pubblicato alla fine del corso. Sul portale Studium sarà possibile seguire quotidianamente il diario delle lezioni. Gli argomenti trattati sono:
Sistemi di equazioni lineari.
Elementi di calcolo vettoriale.
Elementi di geometria analitica piana.
Generalità sugli insiemi numerici.
Successioni di numeri reali.
Funzioni reali di variabile reale e loro limiti.
Calcolo differenziale per le funzioni reali di una variabile reale e sue applicazioni.
Si fa presente che tutti gli argomenti trattati sono indispensabili per acquisire una buona conoscenza della materia e tutti saranno oggetto delle prove d’esame. Per alcuni teoremi non verrà richiesta la dimostrazione. Per conoscere il grado di approfondimento con cui saranno presentati i singoli argomenti ( ad esempio se di un teorema è omessa la dimostrazione ) basterà seguire il diario delle lezioni pubblicato quotidianamente su Studium. Si ricorda comunque che la frequenza delle lezioni e la partecipazione attiva ad esse e alle attività integrative agevoleranno l’apprendimento.
Testi di riferimento
1) Giovanni Emmanuele Analisi Matematica I Pitagora editore
2) M. Bramanti, C.D. Pagani, S. Salsa: Matematica - calcolo infinitesimale e algebra lineare, ed. Zanichelli
3) S. Salsa, A. Squellati: Esercizi di Matematica 1, ed. Zanichelli
4) Cento pagine di algebra lineare.
5) Cento pagine di geometria analitica nel piano
Programmazione del corso
Argomenti | Riferimenti testi | |
---|---|---|
1 | Insiemi numerici | 1-1 |
2 | Successioni numriche | 1 capitolo 3 |
3 | Funzioni di un vaiabile e calcolo infinitesimale | 1 capitolo 5 |
4 | Calcolo differenziale | 1 capitolo 6 |
5 | Sistemi lineari | 4 |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
L'esame finale consiste in una prova scritta ed una prova orale. La prova scritta consiste in esercizi tecnici e domande di teoria. Agli inizi di dicembre si terrà una prova in itinere non obbligatoria sulla parte di programma già svolta con la stessa modalità della prova finale. Chi supera la prova in itinere svolgerà l'esame finale solo sulla seconda parte del programma. Le date degli esami saranno sul sito del corso d laurea.
La verifica dell' apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Esempi di domande e/o esercizi frequenti
Si vedano su Studium esercizi e compiti di esame degli anni precedenti