FONDAMENTI DI SCIENZA E TECNOLOGIA DEI MATERIALI POLIMERICI

Anno accademico 2021/2022 - 1° anno - Curriculum Chimica dei Materiali e Nanotecnologie
Docente: Antonio POLLICINO
Crediti: 6
SSD: ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI
Organizzazione didattica: 150 ore d'impegno totale, 103 di studio individuale, 35 di lezione frontale, 12 di esercitazione
Semestre:

Obiettivi formativi

  • Conoscenza e capacità di comprensione: Conoscenza di base sulle relazioni tra la struttura dei materiali polimerici e loro proprietà meccaniche, sulle tecnologie di trasformazione dei materiali polimerici, sulle problematiche relative alla loro produzione e riciclaggio. Sviluppo delle capacità di un chimico di 'interfacciarsi con altre figure professionali conoscendone in parte il linguaggio e le esigenze. Acquisire inoltre la conoscenza di metodiche di derivazione ingegneristica che possano essere sfruttate per completare la caratterizzazione analitica dei materiali polimerici.
  • Conoscenza e capacità di comprensione applicate: Capacità di applicare quanto appreso durante le lezioni frontali nelle esercitazioni svolte durante il corso.
  • Autonomia di giudizio: Gli studenti imparano a valutare in modo obiettivo quanto appreso durante le lezioni e le esercitazioni.
  • Abilità comunicative: Gli studenti acquisiscono abilità comunicative che si formano sia durante le lezioni, grazie ad una continua interlocuzione verbale con il docente, che durante l'esame orale.
  • Capacità di apprendere: Le capacità di apprendimento vengono valutate tramite l'esame orale e le esercitazioni che costituiscono parte importante del corso.

Modalità di svolgimento dell'insegnamento

L'insegnamento prevede lezioni frontali e una prova in itinere


Prerequisiti richiesti

Il corso è rivolto a studenti con competenze pregresse nell'ambito della chimica macromolecolare.


Frequenza lezioni

La frequenza al corso è obbligatoria. Oltre ai casi già previsti dai Regolamenti, esenzioni motivate parziali o totali dalla frequenza possono essere riconosciute, tramite apposita delibera del Consiglio del Corso di Studi, dietro presentazione di istanza motivata e riconosciuta tale dal Consiglio e se esistono le condizioni, concordate con il docente, per attivare le necessarie forme di supporto didattico integrativo, atte a garantire comunque la adeguata preparazione dello studente. Per quanto concerne lo status di studente lavoratore, di studente atleta e di studente in situazione di difficoltà accertate tramite certificazioni formali, si rimanda all’articolo 27 del “Regolamento Didattico di Ateneo”.


Contenuti del corso

Proprietà che orientano la selezione dei materiali in campo ingegneristico e in applicazioni strutturali. Costo e disponibilità. Proprietà meccaniche. Prove di trazione. Elasticità lineare e non lineare. I moduli elastici. Basi fisiche del modulo. Rigidità del legame. Determinazione del modulo di Young. Pro­ve di durezza. Dislocazioni e snervamento. Proprietà delle dislocazioni. Meccanismi del rafforzamento. Metodi di rafforzamento e plasticità dei materiali.. Frattura improvvisa e tenacità. Micromeccanismo della frattura improvvisa. Frattura per fatica. Meccanismo della fatica. Creep. Relazioni proprietà-struttura. Cenni alla teoria dell’elasticità delle gomme. Proprietà viscoelastiche dei polimeri. Equazioni costitutive. Cedevolezza. Moduli viscoelastici di rilassamento. Proprietà meccanici dinamiche. Misure dinamico meccaniche e studio della struttura dei polimeri e delle transizioni. Principio di equivalenza tempo-temperatura. Modelli viscoelastici. Snervamento e architettura molecolare. Modello di Eyring. Criteri di cedimento per snervamento. Microcavitazione e criteri di cedimento per microcavitazione. Tenacità. Principi meccanici della frattura fragile dei materiali polimerici. Proprietà meccaniche delle fibre. Le tecnologie di trasformazione dei materiali polimerici. Elementi di reologia. Viscosità. Comportamento newtoniano e non newtoniano. Dipendenza della viscosità dalla velocità di deformazione. Dipendenza della viscosità dalla massa molecolare. Dipendenza della viscosità dalla temperatura e dalla pressione. Fenomeni di elasticità del fuso. Equazioni costitutive dei fusi polimeri viscoelastici. Reometri. Principi di funzionamento delle macchine di trasformazione dei materiali polimerici. Stampaggio. Estrusione. Stampaggio a iniezione. Calandratura. Stampaggio per soffiatura. Termoformatura. Formatura rotazionale. Formatura con trasferimento. Cenni sullo stampaggio 3D. Compositi a matrice polimerica. Fibre e matrici. Fibre di vetro. Fibre di carbonio. Fibre aramidiche. Formato delle fibre per compositi. Compositi particellari. Proprietà meccaniche. Micromeccanica della lamina. Tecnologie manuali. Formatura in autoclave. Formatura per Resin Transfer Moulding. Formatura per avvolgimento. Formatura per pultrusione. Formatura con sacco in pressione. Formatura per infusione. Tecnologie per materiali compositi a matrice termoplastica. Nanocariche (nanofibre di carbonio; argille; nanosilice; nanotubi di carbonio, grafene) e loro nanocompositi: metodi di preparazione e prestazioni. Riciclo dei materiali polimerici. Relazioni materiali-processi-proprietà nella lavorazione dei polimeri riciclati. Riciclo dei materiali poliolefinici. Ristabilizzazione di materiali riciclati e nuove tecnologie di riciclo.


Testi di riferimento

Scienza e Ingegneria dei Materiali una introduzione (W. D. Callister, Jr. - Edises)

Fondamenti di scienza dei polimeri (A.I.M.-Pacini Editore)

Scienza e tecnologia dei materiali polimerici (Bruckner et al. – Edises).

Reologia dei materiali polimerici: scienza ed ingegneria (N. Grizzuti - Edizioni Nuova Cultura)

Introduction to physical polymer science (L.H.Sperling – Wiley)

An Introduction to mechanical properties of solid polymers (I.M. Ward-J.Sweeney – Wiley)

Fabbricazione di componenti in materiali polimerici (A.M. De Filippi - Hoepli)

Materiali compositi (I. Crivelli Visconti, G. Caprino, A. Langella - Hoepli)

Manufacturing processes for advanced composites (F.C. Campbell – Elsevier)

Ciclo di vita dei materiali polimerici - Atti del XXIX Convegno Scuola AIM (AIM - Pacini editore)



Programmazione del corso

 ArgomentiRiferimenti testi
1Proprietà che orientano la selezione dei materiali in campo ingegneristico e in applicazioni strutturali. Costo e disponibilità.Appunti lezione 
2Proprietà meccaniche materialiCommenti alle diapositive lezioni 2-9 (Studium) 
3Relazioni proprietà-strutturaCommenti alle diapositive lezioni 10-20 (Studium) Fondamenti di scienza dei polimeri pagg. 262-327 - Scienza e tecnologia dei materiali polimerici pagg. 166-207  
4Le tecnologie di trasformazione dei materiali polimericiCommenti alle diapositive lezioni 22 (Studium) Fabbricazione di componenti in materiali polimerici pagg.12-183 - Scienza e tecnologia dei materiali polimerici pagg. 211-248  
5Compositi a matrice polimericaCommenti alle diapositive lezioni 22-24 (Studium) Materiali compositi pagg. 27-170 Manufacturing processes for advanced composites  
6Riciclo dei materiali polimericiCommenti alle diapositive lezione 25 (Studium) Ciclo di vita dei materiali polimerici - Atti del XXIX Convegno Scuola AIM (AIM - Pacini editore)  

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Nel corso del periodo di lezione si procederà alla verifica dell'apprendimento mediante una prova in itinere scritta che riguarderà le proprietà meccaniche dei materiali e dei materiali polimerici in particolare. Essa si terrà orientativamente nella prima decade di Maggio. Il superamento della prova farà sì che la prova finale (orale) verterà solo sugli argomenti non oggetto della prova in itinere.

Durante l’anno sono fissati sette appelli d’esame (ordinari) più quattro appelli riservati agli studenti fuori corso.
Nei periodi consentiti dal calendario accademico è inoltre possibile, contattando il docente via e-mail o per via telefonica, concordare ulteriori colloqui di esame (con cadenza settimanale)
Modalità di iscrizione ad un appello d’esame: Prenotazione sul portale d'ateneo La prova d'esame consiste nell'esposizione orale di argomenti affrontati durante il corso.

La valutazione dell'esame è basata sui seguenti criteri: livello di conoscenza degli argomenti richiesti, capacità espressiva e proprietà di linguaggio, capacità di applicare le conoscenze a semplici casi studio, capacità di collegamento dei diversi temi del programma di insegnamento.

La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.


Esempi di domande e/o esercizi frequenti

I moduli elastici. Basi fisiche del modulo.

Metodi di rafforzamento e plasticità dei materiali.

Frattura improvvisa e tenacità. Micromeccanismo della frattura improvvisa.

Teoria dell’elasticità delle gomme.

Proprietà viscoelastiche dei polimeri. Equazioni costitutive. Cedevolezza.

Misure dinamico meccaniche e studio della struttura dei polimeri e delle transizioni.

Modelli viscoelastici.

Principi meccanici della frattura fragile dei materiali polimerici. Proprietà meccaniche delle fibre.

Comportamento newtoniano e non newtoniano.

Dipendenza della viscosità dalla velocità di deformazione.

Dipendenza della viscosità dalla massa molecolare.

Fenomeni di elasticità del fuso.

Equazioni costitutive dei fusi polimeri viscoelastici.

Reometri.

Stampaggio. Estrusione. Stampaggio a iniezione.

Fibre e matrici. Fibre di vetro. Fibre di carbonio. Fibre aramidiche. Formato delle fibre per compositi.

Compositi particellari. Proprietà meccaniche. Micromeccanica della lamina.

Tecnologie manuali. Formatura in autoclave. Formatura per Resin Transfer Moulding. Formatura per avvolgimento. Formatura per pultrusione. Formatura con sacco in pressione.

Nanocariche (nanofibre di carbonio; argille; nanosilice; nanotubi di carbonio, grafene) e loro nanocompositi: metodi di preparazione e prestazioni.

Relazioni materiali-processi-proprietà nella lavorazione dei polimeri riciclati.

Riciclo del PET